数学不好真的是因为智商问题吗?其实很多家长和学生都十分困惑。今天,小编整理了近几年的满分学霸答题经验后,发现他们是这样做的!
四种学霸答题经验
1.功在平时,学会总结:多做题,总结题型
要掌握知识点,多做类型题,用题目来巩固知识点,要学会用一道题型掌握一类题型。这样既节省时间,又能够灵活自如应对考试中千变万化的数学题型。
有时候拿到一个题目你知道这样做,但是你不一定知道为什么要这样做,你知道这个套路就可以了。
2.考试时对试卷的把控:学会宏观把握
大部分地区的试卷结构依次是选择题、填空题、大题。根据自己实际掌握的情况,进行一个简单的分析,先易后难,把自己最有把握拿到的分拿到,那种特别难的最后再看。
3.考试时间分配很重要:多拿分才是王道
有些同学是碰到一道题目,只要做不出来,就不甘心,非要把它做出来不可;还有一类学生是:一看题,不会,算了,下一道。
针对这两种情况,一定要计划好自己考试的分配时间。一般来说:选择题和填空题为35-40分钟,大题一个小时15-20分钟,最后剩5-10分钟浏览考试卷,稍作检查,防止小粗心而失分。
加小编微信,入南通家长交流群(注明新几年级)!
4.熟悉题型:每种题型解题方法不一样
选择题排除(并非对所有题好使)
填空题猜测(根据题干猜测)
大题写知识点和公式。
八种满分技巧
1.认真研究《高考考纲》《
高考考试说明》
《成考考纲》和《成考考试说明》是每位考生必须熟悉的最权威最准确的成考信息,通过研究应明确"考什么"、"考多难"、"怎样考"这三个问题。
2.多从思维的高度审视知识结构
你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.换个方式看例题,拓展思维空间
那些看课本和课本例题一看就懂,一做题就懵的学生一定要看这条!不少学生看书和看例题,往往看一下就过去了,看时觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的哪里与解答不同,哪里没想到,该注意什么。
4.精做试题,探究出题的目的
成考数学能力的提高离不开做题,但不是搞题海战术,要通过一题联想到很多题。你要着重研究解题的思维过程,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如透彻地掌握一道典型题。
一道题的价值不在于做对、做会,而在于你明白了这题想考你什么。
5.学会优化解题过程
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求质量,少费时,用足够的时间思考解答高档题。
要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。
6.分析试卷总结经验
考试结束试卷发下来,要认真分析得失,总结经验教训然后将试卷中错误分类。
(1)遗憾之错。就是分明会做,反而做错了的题。
(2)似非之错。记忆得不准确,理解得不够透彻,应用得不够自如;回答不严密、不完整等。
(3)无为之错。由于不会答错了或猜的,或者根本没有答,这是无思路、不理解,更谈不上应用的问题。原因找到后就消除遗憾、弄懂似非、力争有为。
7.错一次反思一次
考试发生些错误并不可怕,要紧的是避免类似的错误在今后的考试中重现。因此平时注意把错题记下来,笔记包括三方面:
(1)记下错误是什么,最好用红笔划出。
(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。
(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。
8.把好的做法形成一种习惯
柏拉图说:"优秀是一种习惯"。如"审题之错"是否出在急于求成?可采取"一慢一快"战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
另外将平常的考试看成是积累考试经验的重要途径,把平时考试当作
高考,从各方面不断的调试,逐步适应。注意书写规范,重要步骤不能丢,丢步骤等于丢分。
六种解题思想
1.函数与方程思想
所谓函数的思想是指用运动变化的观点去分析和研究数学中的数量关系,建立函数关系或构造函数,再运用函数的图像与性质去分析、解决相关的问题。
所谓方程的思想是分析数学中的等量关系,去构建方程或方程组,通过求解或利用方程的性质去分析解决问题。
2.数形结合思想
数与形在一定的条件下可以转化。如某些代数问题、三角问题往往有几何背景,可以借助几何特征去解决相关的代数三角问题;而某些几何问题也往往可以通过数量的结构特征用代数的方法去解决。
解题类型
①“由形化数”:借助所给的图形,观察研究,提示出图形中蕴含的数量关系,反映几何图形内在的属性。
②“由数化形” :根据题设条件正确绘制相应的图形,使之能充分反映出它们相应的数量关系,提示出数与式的本质特征。
③“数形转换” :根据“数”与“形”既对立,又统一的特征,观察图形的形状,分析数与式的结构,引起联想,适时将它们相互转换,化抽象为直观并提示隐含的数量关系。
3.分类讨论思想
解决分类讨论问题的关键是化整为零,在局部讨论降低难度。
常见的类型
类型1:由数学概念引起的的讨论,如实数、有理数、绝对值、点(直线、圆)与圆的位置关系等概念的分类讨论;
类型2:由
数学运算引起的讨论,如不等式两边同乘一个正数还是负数的问题;
类型3 :由性质、定理、公式的限制条件引起的讨论,如一元二次方程求根公式的应用。
类型4:由图形位置的不确定性引起的讨论,如直角、锐角、钝角三角形中的相关问题。
类型5:由某些字母系数对方程的影响造成的分类讨论,如二次函数中字母系数对图象的影响,二次项系数对图象开口方向的影响,一次项系数对顶点坐标的影响,常数项对截距的影响等。
分类的原则:分类不重不漏。
4.转化与化归思想
转化与化归是一切数学思想方法的核心。数形结合的思想体现了数与形的转化;函数与方程的思想体现了函数、方程、不等式之间的相互转化;分类讨论思想体现了局部与整体的相互转化,所以以上三种思想也是转化与化归思想的具体呈现。
转化的原则是将不熟悉和难解的问题转为熟知的、易解的和已经解决的问题,将抽象的问题转为具体的和直观的问题;将复杂的转为简单的问题。
常见的转化方法
①直接转化法:把原问题直接转化为基本定理、基本公式或基本图形问题;
②换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题;
③数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径;
④等价转化法:把原问题转化为一个易于解决的等价命题,达到化归的目的;
⑤特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题;
⑥构造法:“构造”一个合适的
数学模型,把问题变为易于解决的问题;
⑦坐标法:以坐标系为工具,用计算方法解决几何问题。
5.特殊与一般思想
这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
6.极限思想
一般步骤为:①对于所求的未知量,先设法构思一个与它有关的变量;②确认这变量通过无限过程的结果就是所求的未知量;③构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。